Abstract

The study of molecular nanoelectronic devices has recently gained significant interest, especially their potential use as functional junctions of molecular wires. Aromatic systems with π-conjugated bonds within their chemical backbones, such as catechol, have attracted particular attention in this area. In this work, we focused on calculating and determining catechol’s electrical and thermal transport properties using the theoretical method of Green’s functions renormalized in a real space domain within a framework of tight-binding approximation to the first neighbors. Thus, we studied two theoretical models of catechol as a function of its geometry, obtaining striking variations in the profiles of electrical and thermal conductance, the Seebeck coefficient, and the figure of merit. The analyses of the results suggest the potential application of catechol as a likely conductive and thermoelectric molecule serving as a novel material to use in molecular electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.