Abstract

The electrochemical reduction (ECR) of CO2 to CO by nickel-N4-Schiff base complexes as catalysts was investigated using density functional theory (DFT). Three nickel complexes, 1-Ni, 2-Ni, and [2-Ni]Me were considered. Two CO2 reduction pathways, i.e., external and internal proton transfer, were proposed and their reaction energy profiles were computed. The external proton transfer pathway which includes three steps has no transition state. The reaction energies for all steps are exothermic and the reaction catalyzed by 1-Ni has the lowest overall reaction energy (-5.72 eV) followed by those by 2-Ni (-5.56 eV) and [2-Ni]Me (-5.54 eV). The internal proton transfer pathway is composed of four steps. The internal proton transfer step (carboxylic formation) includes a transition state. The CO2 reduction by [2-Ni]Me could not proceed via this mechanism, since [2-Ni]Me does not have an NH group in the ligand and 1-Ni has a lower activation energy (0.83 eV), which is in agreement with the experiment. The charge of the pre-adsorption nickel complex seems to be related to the activity of the catalysts. The catalyst with a less positive nickel charge is more active.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.