Abstract
Integrating the vapor generator/separator of an absorption machine and the solar collector field is proposed as a means to reduce the cost and complexity of solar cooling and heating facilities. In order to further enhance the competitiveness of these facilities, some previous work on hybrid and combined absorption cycles is analyzed so that the proposed integration can be configured using these cycles. As a result, a single machine could in addition to pump heat can produce electricity and even consume it for fulfilling the cold and heat demand from the user when solar is not enough, this avoiding implementing a vapor mechanical compressor.The flow established inside the linear solar collector receiver tube is gravity driven and stratified under a counterflow regime. This configuration is numerically modeled in a steady-state 1D fashion, adapting established convective boiling correlations and including modifications for the mixture effects of the zeotropic dissolution NH3LiNO3. used as working fluid for the absorption machine.The results indicate that the proposal is viable with collector lengths compatible with industrial applications. A low sensitivity to the boiling heat transfer correlation chosen has been found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.