Abstract

Aiming to understand the role of the substrate in the adsorption of carbon monoxide on gold clusters supported on metal-oxides, we have started a study of that process on two different alumina substrates: an amorphous-like fully relaxed stoichiometric (Al2O3)20 cluster and the Al terminated (0001) surface of alpha-(Al2O3) crystal. In this paper, we present first principles calculations for the adsorption of one Au atom on both alumina substrate and the adsorption of Au8 on (Al2O3)20. Then, we study the CO adsorption on the minimum energy structure of these three different gold/alumina systems. A single Au adsorbs preferably on top of an Al atom with low coordination, the binding energy being higher in the case of Au/(Al2O3)20. CO absorbs preferably on top of the Au atom, but in the case of Au/(Al2O3)20, Au forms a bridge with the Al and O substrate atoms after CO adsorption. We find other stable sites for CO adsorption on the cluster but not on the surface. This result suggests that the Au activity toward CO may be larger for the amorphous cluster than for the crystal surface substrate. For the most stable Au8/(Al2O3)20 configuration, two Au atoms bind to Al and a O atoms respectively and CO adsorbs on top of the Au which binds to the Al atom. We find other CO adsorption sites on supported Au8 which are not stable for the free Au8 cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call