Abstract
We studied the adsorption of cyanuric fluoride (CF) and s-triazine (ST) molecules on the surface of pristine as well as Al-doped graphenes using density functional theory calculations. Our results reveal low adsorption on the surface of pristine graphene; but by modification of surface using aluminium, resulted Al-doped graphene becomes more reactive towards both CF and ST molecules. We aimed to focus on the adsorption energy, electronic structure, charge analysis, density of state and global indices of each system upon adsorption of CF and ST molecules on the above-mentioned surfaces. Our calculated adsorption energies for the most stable position configurations of CF and ST on Al-doped graphene were −76.53 kJ mol−1 (−57.45 kJ mol−1 BSSE corrected energy) and −115.55 kJ mol−1 (−86.87 kJ mol−1 BSSE corrected energy), respectively, which point to the chemisorption process. For each CF and ST molecule, upon adsorption on the surface of Al-doped graphene, the band gap of HOMO-LUMO was reduced considerably and it becomes a p-type semiconductor, whereas there is no hybridisation between the above-mentioned molecules and pristine graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.