Abstract

Quantum chemistry methods as well as two-dimensional (2D) and three-dimensional (3D) real-space analysis have been conducted to study the photo-induced intramolecular charge-transfer (ICT) and excited state properties of fullerene-phenylphenothiazine, which has recently been developed for solar cells. Firstly, we obtained the energy levels and spatial distributions of HOMO/LUMO, energy gap ( Δ E H – L ) and excitation energies on the basis of quantum chemistry study. Secondly, two-dimensional (2D) and three-dimensional (3D) real-space analysis were used to visualize the CT process and to reveal the nature of the excited states. In the above analyses, the 2D real-space analysis of the transition density matrix provided information about the electron-hole coherence, and the 3D real-space analysis of charge difference density enabled the visualization of the orientation and result of the ICT. The results of real-space analysis directly indicate that some states are ICT states, and others belong to locally excited states. Moreover, according to the generalized Mulliken Hush theory, we calculated the electronic coupling matrix elements and predict that electron transfer for some ICT states more easily takes place than that for some locally excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.