Abstract

An approximate analytical approach is suggested to calculate kinetic parameters for the catalytic oxidation of carbon monoxide on the (111) surfaces of transition metals of platinum, palladium, iridium, rhodium, and nickel. The origin of the activation barriers is discussed in terms of the decomposition analysis. Tunnel effect along the reaction coordinate is considered. An interpretation of possible non-Arrhenius behavior of rate constant of the CO oxidation reactions is suggested in terms of the tunneling. Temperature dependencies of the activation energies are calculated. Isotope effect under substitution of C(12) by C(14) is predicted. Experimental data are interpreted using the developed approach. Relationships between the activation energies and rate constants calculated accounting for quantum effects and the corresponding surface reaction energies are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.