Abstract
The adsorption of oxygen atoms O(3P) on both ideal and hydrated rutile TiO(2)(110) surfaces is investigated by periodic density functional theory (DFT) calculations within the revised Perdew-Burke-Ernzerhof (RPBE) generalized gradient approximation and a four Ti-layer slab, with (2 x 1) and (3 x 1) surface unit cells. It is shown that upon adsorption on the TiO(2) surface the spin of the O atom is completely lost, leading to stable surface peroxide species on both in-plane and bridging oxygen sites with O-binding energies of about 1.0-1.5 eV, rather than to the kinetically unstable terminal Ti-O and terminal O-O species with smaller binding energies of 0.1-0.7 eV. Changes in O-atom coverage ratios between 1/3 and 1 molecular layer (ML) and coadsorption of H(2)O have only minor effects on the O-binding energies of the stable peroxide configurations. High O-atom diffusion barriers of about 1 eV are found, suggesting a slow recombination rate of adsorbed O atoms on TiO(2)(110). Our results suggest that the TiOOTi peroxide intermediate experimentally observed in photoelectrolysis of water should be interpreted as a single spinless O adatom on TiO(2) surface rather than as two Ti-O* radicals coupled together.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.