Abstract

It is crucial to study grain refinement and refinement mechanism for promoting mechanical properties of Mg alloys. In this work, the influence mechanism of Ca on the grain refinement of Al2MgC2 and Al4C3 in Mg alloys was studied. It shows that Ca is easier to adsorb on the surfaces of Al2MgC2 and Al4C3 particles than Mg, which further promotes the adsorption Mg on the surfaces of Al2MgC2 and Al4C3 particles, leading to more crystal nuclei beyond the critical nucleation radius rK. The interface of Ca replaced Mg-2 is found to be more stable, for both Mg/Al2MgC2 interface and Mg/Al4C3 interface. We further revealed that Ca could effectively migrate from the first-layer to the second-layer in both the adsorption slabs and doped interface slabs under ambient condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.