Abstract

Abstract3d‐Metal mononitrides are studied using the density functional theory method. The lowest spin state for these dimers is obtained using the B3LYP hybrid functional with the 6‐311+G* basis set. The equilibrium geometries, vibrational frequencies, binding energies, Mulliken, and natural orbital population analysis charges, natural orbital electronic configuration, electron affinity, and ionization potential are obtained. Mulliken as well as natural orbital population analysis charges indicate that for all dimers, in cations most of the positive charge localized on the transition metal atom where in anions most of the negative charge localized on nitrogen atom. The binding energies for 3d‐metal mononitrides are higher than those for monocarbides and monoxides. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.