Abstract

Humans, animals and wildlife can suffer consequences due to exposure to toxic substances present in the environment, such as disinfection by-products, the halo benzoquinones, which are formed through reactions between chlorine and natural organic matter present in the water. In this paper, the interaction of 2,6-dichloro-3-methyl-1,4-benzoquinone with graphene layer was investigated by ab initio methods based on the density functional theory. The results show that 2,6-dichloro-3-methyl-1,4-benzoquinone adsorption changes the electronic properties of the nanostructure depending on molecule adsorption site. The calculated binding energies show that this molecule interacts with graphene through a chemical adsorption process when the 2,6-dichloro3-methyl-1,4-benzoquinone molecule is parallel to the graphene layer. Our results are promising because they indicate the ability of graphene to serve as a filter for toxic substances present in the water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.