Abstract

The low-lying triplet and singlet potential energy surfaces of the O((3)P)+CH(3)CN reaction have been studied at the G3(MP2)//B3LYP/6-311+G(d,p) level. On the triplet surface, six kinds of pathways are revealed, namely, direct hydrogen abstraction, C-addition/elimination, N-addition/elimination, substitution, insertion, and H-migration. Multichannel Rice-Ramsperger-Kassel-Marcus theory and transition-state theory are employed to calculate the overall and individual rate constants over a wide range of temperatures and pressures. It is predicted that the direct hydrogen abstraction and C-addition/elimination on triplet potential energy surface are dominant pathways. Major predicted end products include CH(3)+NCO and CH(2)CN+OH. At atmospheric pressure with Ar and N(2) as bath gases, CH(3)C(O)N (IM1) formed by collisional stabilization is dominated at T<700 K, whereas CH(3) and NCO produced by C-addition/elimination pathway are the major products at the temperatures between 800 and 1500 K; the direct hydrogen abstraction leading to CH(2)CN+OH plays an important role at higher temperatures in hydrocarbon combustion chemistry and flames, with estimated contribution of 64% at 2000 K. Furthermore, the calculated rate constants are in good agreement with available experimental data over the temperature range 300-600 K. The kinetic isotope effect has also been calculated for the triplet O((3)P)+CH(3)CN reaction. On the singlet surface, the atomic oxygen can easily insert into C-H or C-C bonds of CH(3)CN, forming the insertion intermediates s-IM8(HOCH(2)CN) and s-IM5(CH(3)OCN) or add to the carbon atom of CN group in CH(3)CN, forming the addition intermediate s-IM1(CH(3)C(O)N); both approaches were found to be barrierless. It is indicated that the singlet reaction exhibits a marked difference from the triplet reaction. This calculation is useful to simulate experimental investigations of the O((3)P)+CH(3)CN reaction in the singlet state surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.