Abstract
The multiple-channel reactions SiH(3) + SiH(3)CH(3) --> products and SiH(3) + SiH(2)(CH(3))(2) --> products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory (ICVT) with small-curvature tunneling (SCT) correction over the temperature range of 200-2400 K. The theoretical three-parameter expression k(1)(T) = 2.39 x 10(-23)T(4.01)exp(-2768.72/T) and k(2)(T) = 9.67 x 10(-27)T(4.92)exp(-2165.15/T) (in unit of cm(3) molecule(-1) s(-1)) are given. Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel because of the smaller barrier height among eight channels considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.