Abstract

A vibration isolation system featuring a combination of elastic and magnetic springs and viscous and magnetic damping is presented. A mechanical flat spring houses a permanent magnet that is levitated between two stationary magnets. A prototype of the isolator is manufactured. COMSOL models are developed for the mechanical and magnetic springs. Measured data and model simulations show that the magnets arrangement results in nonlinear magnetic spring with negative linear stiffness. The mechanical spring exhibits linear behavior with positive stiffness. Experiments are performed and a nonlinear dynamic model is developed. The fabricated isolator is characterized at low and high acceleration levels. Results from model show good agreement with measured data at lower acceleration levels. Slight mismatch between model and experiment is evident at higher accelerations. This mismatch is due to the existence of lateral vibrations that are not accounted for in the unidirectional model. Results show that the combination of mechanical flat spring and magnetic spring reduces the resonant frequency of the isolator. In addition, results confirm the ability of the isolator to attenuate vibrations higher than 11.91 Hz when excited at 2.4525 [m s−2].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.