Abstract

In this work, the corrosion prevention behaviors of pyrimidine derivatives (1-12) were investigated by theoretical quantum chemical calculation. Quantum chemical parameters obtained by theoretical calculations such as the Highest Occupied Molecular Orbital (HOMO), Lowest Empty Molecular Orbital (LUMO), molecular electrostatic potential maps (MEP), electronegativity (χ), chemical potential (µ), global electrophilicity index (ω), chemical hardness (η) and global softness (σ) for all compounds were studied using density functional theory (DFT) at the B3LYP / 6-31G (d, p) level. Also, the fraction of transferred electrons (ΔN) between the iron surface and the pyrimidine derivatives compounds were calculated. However, nonlinear optical (NLO) properties have also been investigated. When the quantum chemical parameters obtained by theoretical calculations are examined, it has shown that compound 10 can be used as a good corrosion inhibitor with small ΔEgap (EHOMO-ELUMO), chemical hardness (η) values and high global electrophilicity index (ω), "ΔN" values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call