Abstract

Density function theory (DFT) has been employed to study the geometric and electronic structures of a series of spiro nitramines at the B3LYP/6-31G level. The calculated results agree reasonably with available experimental data. Thermodynamic properties derived from the infrared spectra on the basis of statistical thermodynamic principles are linearly correlated with the number of nitramine groups as well as the temperature. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that some compounds with the predicted densities of ca. 1.9 g/cm3, detonation velocities over 9 km/s, and detonation pressures of about 39 GPa (some even over 40 GPa) may be novel potential candidates of high energy density materials (HEDMs). Thermal stability and the pyrolysis mechanism of the title compounds were investigated by calculating the bond dissociation energies (BDE) at the B3LYP/6-31G level and the activation energies (E(a)) with the selected PM3 semiempirical molecular orbital (MO) based on the unrestricted Hartree-Fock model. The relationships between BDE, E(a), and the electronic structures of the spiro nitramines were discussed in detail. Thermal stabilities and decomposition mechanisms of the title compounds derived from the B3LYP/6-31G BDE and the UHF-PM3 E(a) are basically consistent. Considering the thermal stability, TNSHe (tetranitrotetraazaspirohexane), TNSH (tetranitrotetraazaspiroheptane), and TNSO (tetranitrotetraazaspirooctane) are recommended as the preferred candidates of HEDMs. These results may provide basic information for the molecular design of HEDMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.