Abstract

The application of the spin-echo small angle neutron scattering (SESANS) technique for structural characterization of interacting colloidal suspensions is considered in this work. The framework to calculate the theoretical SESANS correlation function is briefly laid out. A general discussion regarding the features of the SESANS correlation functions obtained from different model systems is presented. In comparison with conventional elastic scattering tools operating at the same length scale, our mean-field calculations, based on a monodisperse spherical colloidal system, show that the real-space measurement provided by SESANS presents a powerful probe for studying the intercolloid potential. The reason of this sensitivity is discussed from the standpoint of way, in which how the spatial correlations are manifested in different neutron scattering implementations. This study leads to a better understanding regarding the distinction between SANS and SESANS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.