Abstract
Protein phosphatase 1 (PP1) is a dinuclear metalloenzyme that catalyzes the dephosphorylation of serine and threonine residues. In this work, the catalytic reaction mechanism of PP1 was theoretically investigated by hybrid density functional theory. Firstly, an initial model of the Mn(II)-Mn(II) active site of PP1 was constructed on the basis of the high-resolution crystal structure, and stationary points along the reaction pathway were optimized and analyzed. The calculations provide strong support for the mechanism of the dephosphorylation by PP1 and suggest that His125 plays the role of donating a proton to the leaving group. Furthermore, reaction models with the Mn-Mn centers at different oxidation states [Mn(III)-Mn(II) and Mn(III)-Mn(III) centers] were designed. Our calculations show that increasing the oxidation state of one or both Mn(II) can shorten the bond lengths between the metal ions and the ligands, and increase the energy barrier of the related reactions. We found it interesting that artificially adding a negatively charged hydroxy ligand into the Mn(III)-Mn(II) center can recover the shortened coordination bonds and lower the increased energy barrier. Our investigation suggests that the definite oxidation states of the metal centers should be significantly correlated to the negative charges of the ligands not only in phosphoprotein phosphatases, but also in purple acid phosphatases and Escherichia coli 5'-nucleotidase. This means that all the members of phosphoprotein phosphatases adopt homodivalent centers, and suggests the heterovalent active sites of purple acid phosphatases have evolved from homodivalent ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.