Abstract
In this work, the deactivation pathways of curcuminoids after photoexcitation was studied by employing density functional theory to explore their UVA radiation screening capacity. A comprehensive computational characterization of the excited-state processes of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was done. The molecules exist in diketo and enol forms which are in equilibrium and interconvertible through keto-enol tautomerism. The enolic forms of each of the studied molecules have eight geometric cis–trans isomers as a result of torsion rotation about three different carbon–carbon double bonds across the aliphatic chain. For each geometric isomer, sixteen possible rotamers are found to exist due to rotation about five different carbon–carbon single bond rotations, also across the skeleton of the aliphatic chain. Upon photoexcitation, the studied molecules follow three main pathways of radiationless decay: (a) rotamerism and interconversion between rotamers of comparable energies which are in equilibrium, (b) interconversion between the cis–trans geometrical isomers where an efficient vibrational relaxation path is formed at ∼90° during torsion rotation about carbon–carbon double bond, and (c) excited state intramolecular proton transfer in a single O–H stretching vibration through a cyclic intramolecular hydrogen bonded ring formed at the centre of the molecule giving back the original structure. The absorption and emission spectra of the molecules were also simulated where the theoretically obtained absorption and emission maxima are close to the reported experimental values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.