Abstract

The possible reaction pathways of silicate species to linear- and ring-structure oligomers up to silicate hexamers in the basic medium have been studied using the density functional theory. The calculations were performed at the ωB97XD/6-31+G(d,p) level, and the integral equation formalism polarizable continuum model was employed to simulate the solvent effects, and it was found that they are appropriate in exploring the reaction mechanism of silicate species condensation. There are two steps in the anionic silicate condensation reactions: the SiO-Si bond formation step and the dehydration step. Moreover, the latter is the rate-limiting step for most of the reaction pathways except for the cyclization reaction of the linear pentamer to the 5-ring. The short linear oligomers would be likely formed from the reaction between monomers and oligomers, while the longer ones are easily formed through the reactions between short oligomers. The 4-ring and branched 5-ring oligomers are found to be formed very favorable both in kinetic and thermodynamic and could have great influences on the initial stage of zeolite synthesis. The intramolecular and intermolecular hydrogen bond effect of silicate species is an important factor affecting the reaction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.