Abstract
The hydrogen abstraction reactions by H and CH3 radicals from CH3OCH3 and some of their H/D isotopologues are studied by semiclassical transition state theory. Many high-level density functional, ab initio, and combinatory quantum chemical methods, including B3LYP, BB1K, MP2, MP4, CCSD(T), CBS-Q, and G4 methods, are employed to compute the energies and rovibrational properties of the stationary points for the title reactions. Xij vibrational anharmonicity coefficients, used in semiclassical transition state theory, are computed at the B3LYP, BB1K, and MP2 levels of theory. Thermal rate coefficients and kinetic isotope effects are computed over the temperature range from 200 to 2500 K and compared with available experimental data. The computed rate constants for the title reactions are represented as the equation k(T) = ATn exp[−E(T + T0)/(T2 + T02)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.