Abstract

The reaction of BeH+ with background gaseous H2O may play a role in qubit loss for quantum information processing with Be+ as trapped ions, and yet its reaction mechanism has not been well understood until now. In this work, a globally accurate, full-dimensional ground-state potential energy surface (PES) for the BeH+ + H2O reaction was constructed by fitting a total of 170 438 ab initio energy points at the level of RCCSD(T)-F12/aug-cc-pVTZ using the fundamental invariant-neural network method. The total root-mean-square error of the final PES was 0.178 kcal mol-1. For comparison, quasi-classical trajectory calculations were carried out on the PES at an experimental temperature of 150 K. The obtained thermal rate constant and product branching ratio of the BeD+ + H2O reaction agreed quite well with experimental results. In addition, the vibrational state distributions and energy disposals of the products were calculated and rationalized using the sudden vector projection model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call