Abstract

Poly(fluorene)-type materials are widely used in polymer-based emitting devices. During operation there appears, however, an additional emission peak at around 2.3 eV, leading to both a color instability and reduced efficiency. The incorporation of the carbazole units has been proven to efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate two series of alternating fluorene/carbazole oligomers and copolymers poly[2,7-(N-(2-methyl)-carbazole)-co-alt-2,7-m(9,9-dimethylfluorene)], namely, PFmCz (m = 1,2) and gain a detailed understanding of the influence of carbazole units on the electronic and optical properties of fluorene derivatives. The electronic properties of the neutral molecules, HOMO-LUMO gaps (Delta(H-L)), in addition to the positive and negative ions, are studied using B3LYP functional. The lowest excitation energies (E(g)s) and the maximal absorption wavelength lambda(abs) of PFmCz (m = 1,2) are studied, employing the time-dependent density functional theory (TD-DFT). The properties of the two copolymers, such as Delta(H-L), E(g), IPs, and EAs were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n = 0). The outcomes showed that the carbazole unit is a good electron-donating moiety for electronic materials, and the incorporation of carbazole into the polyfluorene (PF) backbone resulted in a broadened energy gap and a blue shift of both the absorption and photoluminescence emission peaks. Most importantly, the HOMO energies of PF1Cz and PF2Cz are both a higher average (0.4 eV) than polyfluorene (PF), which directly results in the decreasing of IPs of about 0.2 eV more than PF, indicating that the carbazole units have significantly improved the hole injection properties of the copolymers. In addition, the energy gap tends to broaden and the absorption and emission peaks are gradually blue-shifted to shorter wavelengths with an increase in the carbazole content in the copolymers. This is due to the interruption of the longer conjugation length of the backbone in the (F1Cz)(n) series.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call