Abstract
In order to have efficient and highly stereoselective cyclopropanating reagents, the cyclopropanation reaction of ethylene promoted with Samarium(II) carbenoid [SimmonsSmith (SS) reagent] were studied by means of B3LYP hybrid density functional method. The geometries for reactants, transition states and products are completely optimized. All transition states were verified by the vibrational analysis and the intrinsic reaction coordinate (IRC) calculations. The results showed that, identical with the lithium carbenoid, CH3SmCH2X (X = Cl, Br and I) can fairly react with ethylene via both methylene transfer pathway (pathway A) and carbometalation pathway (pathway B). And the cyclopropanation reaction via methylene transfer pathway proceeds with a lower barrier and at lower temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.