Abstract

ABSTRACTThe spin Hamiltonian parameters (g factors, hyperfine structure constants and zero-field splittings D and E) and local structures for Mn2+ and Ni2+ in [Zn(en)3](NO3)2 single crystal are theoretically investigated from the perturbation calculations for trigonally distorted 3d5 and trigonally (or orthorhombically) distorted 3d8 cluster. The trigonal Mn2+ and Ni2+ centres are found to undergo the moderate angular variations Δβ of 4.5° and 5.2°, respectively, related to host Zn2+ site due to size mismatch. The orthorhombic Ni2+ centre shows the relative axial elongation ratio ρ (≈ 2.5%) and the relative perpendicular bond length variation ratio τ (≈0.2%). For Mn2+ centre, the contributions to g-shifts ΔgCT (or hyperfine structure constants ACT and zero-field splitting DCT) from charge-transfer (CT) mechanism are opposite in sign and five times (or 5% and 8%) in magnitude compared with those from crystal-field (CF) mechanism. For the trigonal Ni2+ centre, ΔgCT (or DCT) are the same (or opposite) in sign and 17% (or 2%) in magnitude related to those from CF mechanism. For the orthorhombic Ni2+ centre, ΔgCT and ECT (or DCT) are same (or opposite) in sign and 16% and 48% (or 442%) in magnitude with respect to those from the CF mechanism. The signs and magnitudes of the trigonal distortion angles δβ (≈ −0.3 and 0.4°) related to an ideal octahedron and the local angular variations Δβ related to the host bond angle are suitably illustrated by those of the axial distortion degree (ADD) and the angular variation degree (AVD) of the systems, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call