Abstract

Hydrogen bonding interactions between trimethylamine (TMA) and a series of para substituted phenols (X– C6H4OH , X = H , CH3, NH2, Cl , CN , and NO2) are studied by using density functional theory with the hybrid B3LYP functional and the 6-31++G(d,p) basis set. Both electron donor and acceptor substituents (X) are chosen to study systematically the relation between the proton donor ability of the phenols and the strength of the OH … N hydrogen bond. The effect of hydrogen bonding on spectral and structural parameters and their inter relation are discussed. The natural bond orbital (NBO) analysis (occupation of σ* orbitals, hyperconjugative energies and atomic charges) is also carried out to elucidate the reason behind the spectral and structural changes due to hydrogen bond formation. Several correlations between hydrogen bond strength and bond properties are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.