Abstract

Viewing the immune system as a molecular recognition device designed to identify “foreign shapes”, we estimate the probability that an immune system with N Ab monospecific antibodies in its repertoire can recognize a random foreign antigen. Furthermore, we estimate the improvement in recognition if antibodies are multispecific rather than monospecific. From our probabilistic model we conclude: (1) clonal selection is feasible, i.e. with a finite number of antibodies an animal can recognize an effectively infinite number of antigens; (2) there should not be great differences in the specificities of antibody molecules among different species; (3) the region of a foreign molecule recognized by an antibody must be severely limited in extent; (4) the probability of recognizing a foreign molecule, P, increases with the antibody repertoire size N Ab ; however, below a certain value of N Ab the immune system would be very ineffectual, while beyond some high value of N Ab further increases in N Ab yield diminishing small increases in P; (5) multispecificity is equivalent to a modest increase (probably less than 10) in the antibody repertoire size N Ab , but this increase can substantially improve the probability of an immune system recognizing a foreign molecule. Besides recognizing foreign molecules, the immune system must distinguish them from self molecules. Using the mathematical theory of reliability we argue that multisite recognition is a more reliable method of distinguishing between molecules than single site recognition. This may have been an important evolutionary consideration in the selection of weak non-covalent interactions as the basis of antigen-antibody bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.