Abstract
Allowed and forbidden transitions have been studied for a number of atomic systems of interest in astrophysics, laser physics, or fusion research. All calculations have been based on the multiconfiguration Hartree-Fock (MCHF) method extended to include relativistic corrections in the Breit-Pauli approximation. The computer codes for this atomic structure software package were transferred to the CRAY supercomputer and modified for more convenient computation. Techniques were developed to enhance the range of problems considered, by either increasing the accuracy of prediction or increasing the complexity of problems considered. An example is the prediction of a bound state for Ca/sup -/ for which experimental evidence was inconclusive. Several different types of problems have been considered. A study of energy levels and lifetimes of a Rydberg series can given insight into electronic structure and explain deviations from regular behavior, and a number of such studies were performed. With the MCHF + Breit-Pauli approach it has been possible to determine a large portion of a spectrum. In core excited quartets of Na, autoionization along spin-orbit mixing and term dependence were all important in predicting lifetimes in excellent agreement with the most recent experiments. Some photoionization studies were performed which, like autoionization require the calculationmore » of continuum functions. Finally, an attempt was made to combine the MCHF method with many-body perturbation theory so as to build on the strengths of both. 13 refs., 2 figs., 3 tabs.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.