Abstract

Theoretical investigations are carried out on the multichannel reactions CH3COCH3 + F (R1) and CH3COCH3 + Br (R2) by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the MC-QCISD (single-point) level. The rate constants are calculated by the improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling (SCT) contributions in a wide temperature range 200–1,500 K for the title reactions, H-abstraction channel is favored for the two reactions. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k 1a = 3.22 × 10−15 T 1.51exp(1,190.91/T) cm3 molecule−1 s−1, k 2 = 5.95 × 10−18 T 1.98exp(−4,622.45/T) cm3 molecule−1 s−1. Furthermore, the rate constants of reaction Cl + CH3COCH3 (R3) calculated in the other paper are added to discuss the reactivity trend of different halogen reaction with acetone on the rate constants of this class of hydrogen abstraction reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.