Abstract

Because nanomaterials are highly reactive and electronically sensitive towards a variety of drug molecules, they are thought of as efficient drug sensors. In the present research study, an aluminum carbide (C3Al) monolayer is employed and its interaction is examined with cyclophosphamide (CP) by performing DFT computations. The C3Al monolayer is highly reactive and sensitive towards CP according to the computations. CP interacts with the C3Al monolayer with the adsorption energy of -31.39kcal/mol. A considerable charge transfer (CT) indicates an enhancement in the conductivity. Also, the charge density is explained based on the electron density differences (EDD). The decrease in CP/C3Al energy gap (Eg) by approximately 52.91% is due to the remarkable effect of adsorption on the LUMO and the HOMO levels. Therefore, due to the decrease in Eg which can generate an electrical signal, the electrical conductivity is considerably increased. These results suggest that the C3Al monolayer can be employed as a proper electronic drug sensor for CP. Also, the recovery time for the desorption process of CP form the surface of C3Al is 351s at 598K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call