Abstract

In the present work, explicit water molecule and solvent-field effects on the absorption spectrum of chlorophyll a have been studied using time-dependent density functional theory (TDDFT) method. Calculated results show that the one complex and two water coordinated complexes formed by concerted coordination and hydrogen-bonding interactions would be the most preferable conformations of chlorophyll a in aqueous surroundings. Moreover, four obvious absorption bands are assigned by comparing the theoretically simulated absorption spectra with the experimental ones. The theoretical study shows that the explicit water molecule interactions slightly influence the first absorption band. However, the water coordination and hydrogen-bonding interactions can significantly affect the second absorption band which has a strong red-shift. The solvent-field effect due to the polarity of water on absorptions in Q-bands is relatively smaller than that on absorptions in B-bands. As a consequence, our theoretical study on the absorption spectra in the 350–400 nm region presents that the absorption strength in this region was influenced by the explicit coordination and hydrogen bonding interactions from water molecules, significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call