Abstract

An extended basis set ab initio reaction path calculation for the prototype role-reversed cation radical Diels-Alder reveals that even this symmetry-forbidden cyclization mode proceeds without activation, at least in the gas phase. An intermediate, termed a long-bond complex, is encountered on the path, but the energy minimum is so shallow that the reaction is considered likely to be concerted when entropy effects are considered. The calculation further reveals that the factor which importantly distinguishes the role-reversed cycloaddition mode from the allowed cycloaddition mode, namely, the presence of charge predominantly on the diene moiety as contrasted to the dienophilic moiety, is maintained well along the reaction path and even in the long-bond intermediate. Competition between the role-reversed Diels-Alder and a competing [2+1] cyclobutane cycloaddition is envisioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.