Abstract

We will study fermionic systems like atomic nuclei and bosonic systems like the correlated atoms in a trap from an information-theoretical point of view. The Shannon and Onicescu information measures are calculated for the above systems by comparing the correlated and uncorrelated cases as functions of the strength of the short range correlations. One-body and two-body density and momentum distributions are employed. Thus, the effect of short-range correlations on the information content is evaluated. The magnitude of distinguishability between the correlated and uncorrelated densities is also discussed employing suitable measures for the distance of states i.e. the well known Kullback–Leibler relative entropy and the recently proposed Jensen–Shannon divergence entropy. We will see that the same information-theoretical properties hold for quantum many-body systems obeying Bose–Einstein and Fermi–Dirac (statistics).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.