Abstract

Two-dimensional (2D) materials, due to its excellent mechanical, unique electrical and optical properties, have become hot materials in the field of photocatalysis. Especially, 2D heterostructures can well inhibit the recombination of photogenerated electrons and holes in photocatalysis because of its special energy band structures and carrier transport characteristics, which are conducive to enhancing photoenergy conversion capacity and improving oxidation and reduction ability, so as to purify pollutants and store energy. In this minireview, we summarize recent theoretical progress in direct Z-scheme photocatalysis of 2D heterostructures, focusing on physical mechanism and improving catalytic efficiency. Current challenges and prospects for 2D direct Z-scheme photocatalysts are discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.