Abstract

We review our recent work on the simulation, description and prediction of spin-excitations in adatoms and dimers deposited on metallic surfaces. This work done together with Douglas L. Mills, is an extension of his seminal contribution (with Pascal Lederer) published 50years ago on the spin-dynamics of transition metal impurities embedded in transition metal hosts [Lederer et al. (1967)]. The main predictions of his model were verified experimentally with state of the art inelastic scanning tunneling spectroscopy on adatoms. Our formalism, presented in this review, is based on time-dependent density functional theory, combined with the Korringa–Kohn–Rostoker Green function method. Comparison to experiments is shown and discussed in detail. Our scheme enables the description and prediction of the main characteristics of these excitations, i.e. their resonance frequency, their lifetime and their behavior upon application of external perturbations such as a magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.