Abstract

The heats of formation (HOF) for all the 21 polyisocyanocubanes are calculated systematically with density functional theory (DFT) B3LYP and semiempirical MO(MINDO/3, MNDO, AM1 and PM3) methods. First, the accurate HOFs for the 8 title compounds are obtained by means of designed isodesmic reactions at DFT-B3LYP/6-31G* level, and the cubane cage skeleton has not been broken (i.e. choosing cubane as a reference compound) to produce more accurate and reliable results. It is found that there are good linear relationships between the HOFs calculated using the B3LYP/6-31G* and four semiempirical MO methods, respectively, and all of the linear correlation coefficients are more than 0.9971. The HOFs obtained from PM3 calculation are the best among the four semiempirical MO methods. Then, the accurate HOFs at B3LYP/6-31G* level of other 13 polyisocyanocubanes are obtained by systematically correcting their PM3-calculated HOFs. Polyisocyanocubanes have very high HOFs, and the HOFs increase linearly with the increasing of the number of isocyano groups in a molecule. The results show that polyisocyanocubanes are the new generation explosives with highly potential and exploitable value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.