Abstract
AbstractIn this paper, we present the first calculations of the electron and hole initiated interband impact ionization rate in zinc blende phase GaN as a function of the applied electric field strength. The calculations are performed using an ensemble Monte Carlo simulator including the full details of the conduction and valence bands along with a numerically determined, wave-vector dependent interband ionization transition rate determined from an empirical pseudopotential calculation. The first four conduction bands and first three valence bands, which fully comprise the energy range of interest for device simulation, are included in the analysis. It is found that the electron and hole ionization rates are comparable over the full range of applied electric field strengths examined. Based on these calculations an avalanche photodiode, APD, made from bulk zinc blende GaN then would exhibit poor noise and bandwidth performance. It should be noted however, that the accuracy of the band structure employed and the scattering rates is presently unknown since little experimental information is available for comparison. Therefore, due to these uncertainties, it is difficult to unequivocally conclude that the ionization rates are comparable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.