Abstract
Bismuth telluride (Bi2Te3) is one of the most intricate materials with its semiconducting, insulating and pressure-induced superconducting properties. Although different theoretical works have been carried out to understand the confusing properties of Bi2Te3, information about the high pressure structural, elastic, mechanical and phonon properties of this significant material is still rare. Unlike earlier theoretical approaches, two-body interatomic potentials in the Morse potential form have been employed for the first time to predict the density, phase transition pressure, elastic constants, bulk, shear and Young moduli and elastic wave velocities of Bi2Te3under pressures up to 12 GPa. [Formula: see text] phase transition pressure of Bi2Te3was found to be 10 GPa. The results of above elastic quantities agree well with experiments and are better than some of the published theoretical data. In addition, the effect of pressure on the phonon dispersion and density of states (DOS) were also evaluated with the same potential and their results are satisfactory, especially for the low-frequency acoustic portions of phonons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.