Abstract

We propose that to modify zigzag edges of nanographite structures by hydrogenation, fluorination or oxidation is a method to create magnetic materials made only from light elements. These reactions and methylene addition are compared with each other in several aspects by considering a graphene ribbon having mono-hydrogenated zigzag edges as a starting material. A local-spin-density approximation was applied to the electronic band-structure calculation of nanographite ribbon structures and stability of each ribbon was tested by the first-principles manner. Among possible reactions for graphene ribbon, hydrogenation produces the largest magnetic moment per a carbon atom. Since the hydrogenation is exothermic, however, fluorination has advantage, where the reaction is endothermic. The possible maximum moment is 1/3 of that for the ideal hydrogenationed graphene ribbon. A graphene ribbon with an oxidized zigzag edge and a monohydrogenated zigzag edge possesses a partially spin-polarized flat band similar to t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.