Abstract

We provide ab initio and density functional theory evidence for a family of surprisingly robust like-charged clusters of common HSO4- and H2PO4- oxyanions, ranging up to tetramers of net charge 4-. Our results support other recent theoretical and experimental evidence for "antielectrostatic" hydrogen-bonded (AEHB) species that challenge conventional electrostatic conceptions and force-field modeling of closed-shell ion interactions. We provide structural and energetic descriptors of the predicted kinetic well-depths (in the range 3-10 kcal/mol) and barrier widths (in the range 2-4 Å) for simple AEHB dimers, including evidence of extremely strong hydrogen bonding in the fluoride-bisulfate dianion. For more complex polyanionic species, we employ natural-bond-orbital-based descriptors to characterize the electronic features of the cooperative hydrogen-bonding network that are able to successfully defy Coulomb explosion. The computational results suggest a variety of kinetically stable AEHB species that may be suitable for experimental detection as long-lived gas-phase species or structural units of condensed phases, despite the imposing electrostatic barriers that oppose their formation under ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call