Abstract

The existence of rare-gas-containing hydride ions of boron (HRgBF(+)) has been predicted by using ab initio quantum chemical methods. The HRgBF(+) ions are obtained by inserting a rare gas (Rg) atom in between the H and B atoms of a HBF(+) ion, and the geometries are optimized for minima as well as transition states using second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and coupled-cluster theory (CCSD(T)) based techniques. The predicted HRgBF(+) ions are found to be metastable, and they exhibit a linear structure at the minima and a nonlinear planar structure at the transition state, corresponding to C∞v and Cs symmetries, respectively. All of the predicted HRgBF(+) ions show negative binding energies with respect to the two-body dissociation channel, leading to global minima (HBF(+) + Rg) on the singlet potential energy surface. In contrast, the dissociation energies corresponding to another two-body dissociation channel leading to HRg(+) + BF and two three-body dissociation channels corresponding to the dissociation into H + Rg + BF(+) and H(+) + Rg + BF show very high positive energies. Apart from positive dissociation energies, the predicted ions show finite barrier heights corresponding to the transition states involving a H-Rg-B bending mode, leading to the global minima products (HBF(+) + Rg). The finite barrier heights in turn would prevent the metastable HRgBF(+) species from transforming to global minima products. Structure, harmonic vibrational frequencies, stability, and Mulliken and natural bonding orbital (NBO) charge distribution values for all of the species are reported using the MP2 and DFT methods. Furthermore, the intrinsic reaction coordinate analysis confirms that the metastable minimum-energy structure and the global minimum products are connected through the corresponding transition state for each of the species on the respective singlet potential energy surface. Atoms-in-molecules (AIM) analysis indicates that the HRgBF(+) ions are best described as HRg(+)BF and are analogous to the isoelectronic HRgCO(+) and HRgN2(+) ions. The energetic along with charge redistribution and spectroscopic data strongly support the possible existence of HRgBF(+) ions. Hence, it might be possible to generate HRgBF(+) ions in the DC discharge plasma of a BF3/H2/Rg mixture at low temperature, and the predicted ions may be characterized using the magnetic field modulated infrared laser spectroscopic technique, which has been used earlier to characterize HBF(+) ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call