Abstract

If an electron emits all of its rest mass energy mec2, the relativistic energy of the electron will become zero. According to the special theory of relativity, an electron whose relativistic energy is zero does not have photon energy. In this paper, however, an electron is regarded as having photon energy mec2 and negative energy −mec2, even when its relativistic energy is zero. The state where relativistic energy is zero is achieved due to the positive energy and negative energy canceling each other out. Relativistic energy becomes zero for an electron in a hydrogen atom when the principle quantum number n is zero. The author has already pointed out the existence of an energy level with n=0. If this model is used, it is possible for an electron in the state with n=0 to emit additional photons, and transition to negative energy levels. The existence of negative energy specific to the electron has previously been nothing more than a conjecture. However, this paper aims to theoretically show the existence of negative energy based on a discussion using an ellipse. The results show that the electron has latent negative energy.

Highlights

  • The most important conclusion derived from the special theory of relativity (STR) is the equivalence of inertial mass and energy [1]

  • An electron is regarded as having photon energy mec2 and negative energy −mec2, even when its relativistic energy is zero

  • This paper was able to theoretically predict the existence of latent negative energy possessed by the electron

Read more

Summary

Introduction

The most important conclusion derived from the special theory of relativity (STR) is the equivalence of inertial mass and energy [1]. Energy in all its forms has inertial mass [2]. To put it another way, all changes in the energy of an object ∆E correspond to changes in the object’s inertial mass ∆m [3].

Objectives
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.