Abstract
A model was developed and compared to experimental results for prediction of the induction period during drug delivery from various compositions of biodegradable copolymer PLGA microparticles. The uniqueness of this model is that it considers transient pore evolvement and uses the kinetic parameters of polymer degradation, which are independent of experimental measurements of microparticle erosion, in its analysis. Delivery data from PLGA microparticles (50:50, 75:25, and 85:15) releasing ovalbumin (OVA, 46 kDa) and bovine serum albumin (BSA, 66 kDa) were determined and used as the model systems. Experimental measurements were carried out from 85 to 150 days depending on the PLGA characteristics. The predicted induction periods were approximately 45, 70, and 105 days for the release of both OVA and BSA from 50:50, 75:25, and 85:15 PLGA microparticles, respectively. Overall, these values were in very good agreement with experimentally estimated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.