Abstract

Understanding and predicting the freezing point depression of liquid electrolytes is of interest particularly for low-temperature battery applications. We will present a computational methodology to calculate activity coefficients and the freezing point depression of liquid electrolytes relevant to Li-ion batteries. Theoretical expressions for Born solvation, Debye-Huckel ion atmosphere effects and solvent entropy are used with results from classical molecular dynamics simulations and electronic structure methods to calculate the activity coefficients of liquid electrolytes. Using the calculated activity coefficients as well as neat solvent properties, liquidus lines of the studied electrolytes are obtained up to 1 molal. The liquid electrolytes studied include LiPF6 in dimethyl carbonate and LiPF6 in propylene carbonate. It is found that the more significant freezing point depression of the propylene carbonate-based electrolyte versus dimethyl carbonate-based electrolyte originates in large part from the much higher dielectric constant of propylene carbonate versus dimethyl carbonate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.