Abstract

An antiferromagnetic skyrmion crystal (AF-SkX), a regular array of antiferromagnetic skyrmions, is a fundamental phenomenon in the field of condensed-matter physics. So far, very few proposals have been made to realize the AF-SkX, and most have been based on three-dimensional (3D) materials. Herein, using first-principles calculations and Monte Carlo simulations, we report the identification of AF-SkX in a two-dimensional lattice of the Janus monolayer CrSi2N2As2. Arising from the broken inversion symmetry and strong spin-orbit coupling, a large Dzyaloshinskii-Moriya interaction is obtained in the Janus monolayer CrSi2N2As2. This, combined with the geometric frustration of its triangular lattice, gives rise to the skyrmion physics and long-sought AF-SkX in the presence of an external magnetic field. More intriguingly, this system presents two different antiferromagnetic skyrmion phases, and such a phenomenon is distinct from those reported in 3D systems. Furthermore, by contacting with Sc2CO2, the creation and annihilation of AF-SkX in Janus monolayer CrSi2N2As2 can be achieved through ferroelectricity. These findings greatly enrich the research on antiferromagnetic skyrmions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.