Abstract

Non-trivial bright patterns of reflective flakes recently observed experimentally and numerically in a precessing sphere are reproduced theoretically by the use of a small flat-plate model of flakes with diffusion effects of Brownian motion and the asymptotic velocity field in the double limit of large Reynolds numbers and small Poincaré numbers. It is shown that what is visualized by flakes is not the local flow field but the overall contribution of the velocity gradient, induced by the conical shear layers, over the whole orbit of flakes. It is suggested that Brownian motion plays a significant role to the orientation distribution of flakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.