Abstract

Different theoretical approaches for the calculation of 237Np Mössbauer isomer shifts are investigated. The traditional contact density route is compared to a previously proposed alternative approach that uses energy derivatives with respect to the nuclear radius. Both approaches yield similar results as long as suitable basis sets augmented with large exponents and relativistic methods are used. Density functional theory (DFT) calculations do not show a strong dependency of the 237Np isomer shift on the chosen functional. Wavefunction calculations show that dynamic electron correlation can be important when covalent bonding influences the isomer shift. Effects from spin-orbit coupling are small. The isomer shifts of ionic solids and Np(III) organometallic complexes are largely governed by the oxidation state of Np. Isomer shifts of organometallic Np(IV) complexes are strongly affected by donation bonding. Detailed analysis of the wavefunction results with different active spaces demonstrates that correlation among the outer core Np and occupied ligand frontier orbitals contributes significantly to isomer shifts of Np(IV) compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call