Abstract

Carbazole is one of the typical heterocyclic aromatic compounds (NSO-HETs) observed in polluted urban atmosphere, which has become a serious environmental concern. The most important atmospheric loss process of carbazole is the reaction with OH radical. The present work investigated the mechanism of OH-initiated atmospheric oxidation degradation of carbazole by using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level. The rate constants were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The lifetime of carbazole determined by OH was compared with other typical NSO-HETs. The theoretical results show that the degradation of carbazole initiated by OH radical includes four types of reactions: OH additions to “bend” C atoms, OH additions to “benzene ring” C atoms, H abstractions from C-H bonds and the H abstraction from N-H bond. The OH addition to C1 atom and the H abstraction from N-H bond are energetically favorable. The main oxidation products are hydroxycarbazole, dialdehyde, carbazolequinone, carbazole-ol, hydroxy-carbazole-one and hydroperoxyl-carbazole-one. The calculated overall rate constant of carbazole oxidation by OH radical is 6.52 × 10−12 cm3 molecule−1 s−1 and the atmospheric lifetime is 37.70 h under the condition of 298 K and 1 atm. The rate constant of carbazole determined by OH radical is similar with that of dibenzothiophene oxidation but lower than those of pyrrole, indole, dibenzofuran and fluorene. This work provides a theoretical investigation of the oxygenated mechanism of NSO-HETs in the atmosphere and should help to clarify their potential health risk for determining the reaction pathways and environmental influence of carbazole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call