Abstract

Circularly polarized luminescence (CPL) molecules with thermally activated delayed fluorescence (TADF) features show promising applications in high-efficiency circularly polarized organic light emitting diodes (CP-OLEDs). Herein, a pair of chiral molecules (R)-ImNT and (S)-ImNT are studied, two kinds of conformations are found by molecular dynamic conformation search, namely the quasi-axial and the quasi-equatorial conformations. Moreover, molecule with quasi-axial conformation is conducive to achieve outstanding CPL properties due to the large contributions of chiral groups to natural transition orbitals. While the energy gaps for quasi-equatorial conformations are significantly reduced and spin–orbit coupling effects between them are obviously increased. In addition, the quasi-equatorial configuration can facilitate the reverse intersystem crossing process to achieve remarkable TADF feature. Relationships between molecular geometries and CPL as well as TADF properties are revealed. Our research elucidates the relationship between geometric structure and luminescence mechanism, which could provide valuable insights for the design of efficient CPL-TADF emitters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call