Abstract
Abstract Insufficient understanding of the correlation between pump and pump as turbine (PAT) performance is a major problem encountered in the PAT selection and design. Therefore, establishment of accurate PAT performance prediction methods is necessary. In this paper, theoretical analysis of the relationship between pump and PAT performance was first performed. A theoretical method of predicting PAT performance is developed using theoretical analysis and empirical correlation. In the next step, computational fluid dynamics (CFD) was adopted in the direct and reverse modes performance prediction of a single stage centrifugal pump. To give a more accurate CFD result, all domains within the PAT control volume were modeled and hexahedral structured mesh was generated during CFD simulation. Complete performance curves of its pump and turbine modes were acquired. To verify the accuracy of theoretical and numerical prediction methods, the pump was manufactured and tested on a PAT open test rig. Results comparison and discussion of the theoretical, numerical and some other methods with experimental data were carried out. Eventually, relatively accurate theoretical and numerical PAT performance prediction methods were developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.